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Abstract

Resolution depends on the number of points sampled in a FID; in indirectly detected dimensions it is an important
determinant of the total experiment time. Based on the high redundancy present in NMR data, we propose the
following timesaving scheme for three-dimensional spectra. An extensive grid of discrete t1- and t2-values is used,
which increases resolution while preserving the spectral width. Total experiment time is reduced by avoiding the
recording of t3-FIDs for selected pairs of t1 and t2; typically the recording is omitted for about 75% of the (t1,t2)
combinations. These data sets are referred to as sparse, and post-experimental processing making optimal use of
spectral redundancy provides the missing, non-recorded data. We have previously shown that three-way decom-
position (TWD) within the MUNIN approach provides a practical way to process dense NMR data sets. Here, a
novel TWD algorithm [Ibraghimov, (2002) Numer. Linear Algebra Appl. 9, 551–565] is used to complement a
sparsely recorded time-domain data set by providing the missing FIDs for all (t1,t2) combinations omitted in the
experiment. A necessary condition is that for each t1-value at least a few FIDs are recorded, and similar for each
t2-value. The method is demonstrated on non-uniformly sampled 15N-NOESY-HSQC data sets recorded for the
14 kD protein azurin. The spectra obtained by TWD, reconstruction and ordinary transform to frequency-domain
are, in spite of the large number of signals and the high dynamic range typical for NOESYs, highly similar to a
corresponding reference spectrum, for which all (t1,t2) combinations were recorded.

Abbreviations: DFT – discrete Fourier transform; ME – maximum entropy; MUNIN – multidimensional NMR
spectra interpretation; TWD – three-way decomposition; 1D – one-dimensional; 3D – three-dimensional.

Introduction

The application of NMR to challenging problems in
structural biology often requires spectroscopy at the
very limits of resolution and sensitivity. In multidi-
mensional NMR, both characteristics come at sig-
nificant cost of experimental time, since every new
value in the indirectly detected dimensions has to
await prior equilibration of the spin system. The tradi-
tional method of spectra processing, discrete Fourier
transform (DFT), requires data sampling with regular
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time intervals and therefore dictates a straightforward
relation between spectral width, resolution and ex-
periment time. Variations of this simple processing
scheme have been introduced to improve on resolu-
tion or sensitivity, examples being linear prediction or
maximum entropy reconstruction (reviewed by Koehl,
1999; Hoch and Stern, 2001; Stern et al., 2002).

In the present context, we consider a three-
dimensional (3D) NMR time-domain data set to be
defined on a 3D grid with the evolution times t1, t2
and t3 forming the axes. For normal processing by
DFT, measured data exists for all grid points, and the
latter are regularly spaced. This spacing interval is
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dictated by the sampling bandwidth (spectral width),
and the number of grid points defines evolution time
and delimits the resolution. The limitation imposed
on resolution by available experiment time may be
overcome in various ways. Experimental data may
be extended towards larger evolution times by linear
prediction prior to DFT. The assumption is that all in-
formation needed for this extension is already present
in the data for short evolution times, and a fit of the
existing data with analytical expressions will provide
reasonable values for longer evolution times (Koehl,
1999). A different idea is to drop the requirement for
regularly spaced data (uniform sampling), allowing to
cover during the same experiment time a wider range
of evolution times while preserving in principle a suf-
ficiently short spacing (Barna et al., 1987; Schmieder
et al., 1993). A bonus of this non-uniform sampling is
that a sampling biased towards data points with higher
signal-to-noise should yield an improvement in sens-
itivity (Schmieder et al., 1993; Stern et al., 2002).
For many NMR spectra this could simply consist of a
denser sampling of shorter evolution times. In the con-
text of our regular grid in t1, t2 and t3, a non-uniformly
sampled data set would contain holes, i.e. grid points
for which no data was collected. DFT can no longer be
applied to such data, and more sophisticated methods
such as maximum entropy reconstruction need to be
applied (Hoch and Stern, 2001). For the latter, the am-
biguity of incomplete experimental data is removed by
defining an entropy measure that subsequently is used
to identify an optimal solution. This entropy measure
is defined in frequency space and its function is to
suppress unnecessary spectral features deviating from
a flat baseline.

We propose a different approach that combines ele-
ments of the above ideas with a recently introduced
processing scheme. Time-domain spectra with holes,
which we call sparse data sets, form the input, allow-
ing both for non-uniform, optimized sampling and an
extension of the grid to long evolution times without
changing the fundamental grid spacing or increasing
measurement time. Rather than directly transforming
these data sets using an additional principle such as
entropy, the missing data points are predicted in time
domain, and a full data set defined on a large grid
with narrow, regular spacing is reconstructed. This
prediction is not an extension from only short evolu-
tion times, but it uses all available experimental data.
The resulting large and dense data set may then be
processed as if all of it had been recorded, i.e. linear

prediction to further extend evolution times may be
performed if desired, and normal DFT may be applied.

Three-way decomposition (TWD) as a general
analysis tool has been introduced and discussed about
30 years ago (Caroll and Chang, 1970; Harshman,
1970). It relies on two principles: signals in a multidi-
mensional data set can be described by direct products
of 1D vectors, and the resulting decomposition is
unique for data sets with at least three dimensions
(Kruskal, 1977). It thus differs from other types of
decompositions, which were for example presented
for 2D NMR spectra (Havel et al., 1994). Recently,
we showed with the MUNIN approach that TWD is
a valid method to process experimental NMR spec-
tra and to faithfully reproduce signal positions and
intensities in for example a 15N-NOESY-HSQC with
its large dynamic range and its high density of signals
(Orekhov et al., 2001). Subsequently, the correctness
and completeness of the structural data extracted from
this NOESY with the help of TWD was demonstrated
(Gutmanas et al., 2002). Other applications of MU-
NIN to NMR data sets included series of 15N-HSQC
spectra recorded either for the determination of relax-
ation parameters (Korzhnev et al., 2001) or for the
efficient identification of the binding of small mo-
lecules from a large library to a target protein (‘drug
discovery’; Damberg et al., 2002). However, it is
important to note that the present approach differs fun-
damentally from our earlier applications of TWD to
non-uniformly sampled data (Orekhov et al., 2001). In
the previous work, all data points for a given t1-value
were missing, i.e. in the grid of the input spectrum an
entire plane was removed. Consequently, after drop-
ping this plane, a dense data set was again obtained,
which could then be processed in the same way as
a full, uniformly sampled data set. However, recon-
struction of the missing plane was impossible, and in
all output obtained any data for this t1-value was also
missing. In contrast, the present approach allows for
reconstruction of missing data, but requires that no
complete plane with experimental data be removed.

Before demonstrating this method on examples
where 75% and more of the data points are missing
in the input and thus reconstructed from the remaining
25% of experimentally obtained data, a few remarks
are in place. Reconstruction is only possible because
NMR data contain a significant amount of redundancy.
3D spectra often consist of several million data points;
they contain however only a few thousand signals
(peaks), which can be characterized by a few dozen
numbers each, even if line shapes are to be described.
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Another issue concerns the design of sparse data sets
for efficient saving of experimental time. Evolution
in t3 comes at no cost since equilibrium has to be
awaited anyway before the next execution of the pulse
sequence. Therefore, when recording a sparse data set
one collects for any given (t1,t2) combination either
the entire FID in t3, or the pulse sequence is not run at
all for this (t1,t2) combination. A final remark illus-
trates the optimal use by TWD of experimental data
when reconstructing missing points. For ease of de-
scription, an example of a frequency domain spectrum
is considered (which would indeed be processed by
TWD in the way described here). Assume that the data
point corresponding to the maximum of a cross peak
is missing. Averaging the intensity of the immediate
neighbors would use only limited data, and it would
significantly reduce the maximum and thus falsify the
peak intensity. However, using the line shapes of all
other peaks that have one frequency in common allows
TWD to perform in this situation an almost perfect
reconstruction. This example also shows the need for
at least a few measured data points for each value of
t1, respectively t2; thus no complete (t1,t3) or (t2,t3)
plane may be missing.

In the following, we shortly define the basic model
used by TWD to describe data sets, and then intro-
duce the novel features to the algorithm that allow
treatment of sparse data sets. Results are shown us-
ing real data, namely from a 15N-NOESY-HSQC, and
the influence of various parameters such as the ratio
of experimental vs. predicted data is illustrated. The
discussion includes comparison to other processing
tools, in particular to maximum entropy reconstruction
(Hoch and Stern, 2001).

Methods

The fundamental idea of TWD applied to NMR data is
that a 3D input data set S (in our case an experimental
time-domain spectrum) is optimally approximated by
a given number of 3D components, which in turn are
described by the tensor product of 1D shapes F1, F2
and F3 along the three dimensions (Orekhov et al.,
2001). Note that both the input S as well as the out-
put F1, F2 and F3 are entities that consist of discrete
points, and thus form a 3D matrix and 1D vectors, re-
spectively (usually, all entities are defined on a regular
grid of t1-, t2- and t3-values). Finding the optimal fit
consists of minimizing the following penalty function:

min
∑

ijk

∣∣∣∣∣Sijk −
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by optimizing the components, i.e. varying the values
am, F1m

i , F2m
j and F3m

k . Here, the first sum over m
enumerates the M components, am is the amplitude
of a component, F1m

i , F2m
j and F3m

k are numbers
representing elements of the normalized shapes for a
component, and the indices i, j and k identify grid
points along the three dimensions. The purpose of the
second sum over m is to suppress large differences in
the size of components (Ibraghimov, 2002). It is con-
trolled by the size of Tikhonov’s regularization factor
λ (Tikhonov and Samarskij, 1990). For an input matrix
S of size I∗J ∗K , the number of parameters for optim-
ization is M∗(I + J + K − 2); thus, for a typical size
of S the number of input measurements far exceeds
the number of fit parameters. So far, this corresponds
to the earlier presented MUNIN approach of applying
TWD to NMR data (Orekhov et al., 2001).

The central new feature, requiring a new imple-
mentation of the procedure, is a modified penalty func-
tion required to analyze sparse data sets (Ibraghimov,
2002):

min
∑

ijk

Gijk ·
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j · F3m
k
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2
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(am)2, (2)

where the elements of the matrix G are Gijk = 1 for
a recorded and Gijk = 0 for an omitted spectral data
point Sijk in the NMR experiment. Thus, not recor-
ded data will not contribute to the penalty function.
The key feature about the second expression is that
while the input matrix S is sparse, the output shapes
F1m, F2m and F3m are complete, i.e. vectors with
all elements. This can only be achieved if S never
misses an entire plane; since FIDs along t3 are either
fully sampled or completely omitted, this means that
no row or column in the (t1,t2) plane is empty. The
importance of this new variant of decomposition lies
in the following: By multiplying the output shapes
F1m, F2m and F3m and the amplitudes am as in the
right part of the above expressions, one can recon-
struct a full spectrum S∗. The latter represents an
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optimal approximation of the spectrum S for the ele-
ments that have been experimentally obtained. The
full spectrum S∗ can be transformed and analyzed in
the usual way (in our case of a time-domain data set
by linear prediction and Fourier transform). Details re-
garding the implementation for NMR purposes of the
least-squares minimization, the processing of sparse
data and the Tikhonov regularization can be found in
Orkehov et al. (2001) and Ibraghimov (2002).

All examples in the Results section are based on a
3D 15N-NOESY-HSQC recorded for the 128 residue
long protein azurin (Karlsson et al., 1989); this spec-
trum has been described earlier (Orekhov et al., 2001).
Rather than recording FIDs for only selected pairs of
evolution times (t1,t2), a full spectrum was collected
that serves as reference to assess the quality of the
reconstructions. For the illustrations, the FIDs in the
HN dimension were zero-filled doubling their size and
Fourier transformed, and the region 8.67–8.90 ppm
was extracted. Subsets of FIDs were formed as input
to TWD with various amounts of (t1,t2) combinations.
The degree to which such a subset is sparse is defined
by the ratio between the number of (t1,t2) combin-
ations used and those in the full reference data set;
this ratio is subsequently denoted by R. The selections
were based on random numbers, but exponentially
biased towards shorter values of the evolution times
using an exponential decay time of 20 ms in both di-
mensions. For every subset, the last few percent of
(t1,t2) combinations were used to ensure that all rows
along t1 or t2 contain a few entries. The input for TWD
thus consists of a sparse matrix with various extent
of missing elements. The size of the corresponding
full reference data set was 160 and 44 complex time-
domain points along the HNOE and 15N dimensions,
respectively, and real 24 frequency domain points in
the HN dimension. Other parameters of the TWD runs
that were varied systematically are the number of com-
ponents M, the seed for the random selection of (t1,t2)
combinations, and Tikhonov’s regularization factor λ.
The reconstructed spectra as well as the full reference
spectrum were then processed as follows: DFT was
directly applied to the HNOE dimension. In the 15N di-
mension the time domain signal was extended by 50%
to 66 points by linear prediction using twelve coeffi-
cients prior to DFT. For all dimensions, the size of the
time domain data was doubled by adding zeros prior
to DFT, and the signals were multiplied by a square
sine weighting function prior to DFT. For another
comparison, an additional subset with 25% t3-FIDs
of the full spectrum was constructed for processing

without TWD. This requires uniform sampling, and
the most reasonable way (if this is at all possible) is
to truncate the data along 15N to 11 points. This latter
spectrum was then also extended in the 15N dimension
to 66 points by linear prediction using five coefficients
and transformed like all other spectra. Execution time
for a decomposition on a single 2.4 GHz processors
(running Linux) was 85 minutes on a single CPU,
and it was shown that the algorithm can be efficiently
parallelized.

Results

For a systematic analysis of TWD, a region from a
3D 15N-NOESY-HSQC as described in Methods was
used. The flow chart of Fig. 1 summarizes the proced-
ure, where the bold part describes a normal application
of TWD to a sparse data set (left side of Figure 1).
The other parts of this figure concern the use of a ref-
erence data set, which was experimentally recorded to
100%. A first purpose of this reference data set is to
derive different sparse data sets by eliminating FIDs
along the third dimension; the use of a complete refer-
ence avoids the recording of every new sparse data set
when varying selected parameters such as the ratio R
of missing and total data. Secondly, it provides an ab-
solute reference for the evaluation of the reconstructed
data sets obtained by TWD. Note that for simplicity,
the reference data set (upper right corner of Figure 1)
was defined after application of Fourier transform in
the third dimension.

For a first application, a data set with 25% of the
FIDs along ω3, i.e., R = 0.25, was formed by random
selection of (t1,t2) combinations. Instead of purely
random sampling we used an exponentially biased
sampling with a denser distribution of data points at
the beginning of the decaying signals (Figure 2). This
scheme was proven to be superior both with respect
to resolution and sensitivity in comparison with com-
pletely random sampling (Stern et al., 2002). Other
parameters for this decomposition are a Tikhonov reg-
ularization factor λ = 0.005 and a maximal number
of components M = 30 (see expressions 1 and 2).
The latter choice was based on knowledge from a
15N-HSQC of the number of HN-H groups in the spec-
tral region considered. Figure 3 displays planes with
ωHN = 8.82 ppm of the transformed 3D spectra for
comparison of the output of TWD after reconstruction
and the conventionally processed full reference data
set. The sparse data set with R = 0.25 (Figure 3A)
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Figure 1. Flow-chart summarizing the application of TWD to vari-
ous data sets derived from a 15N-NOESY-HSQC. The left side (bold
lines) describes the normal use where only a sparse data set is recor-
ded. The other parts (thin lines) indicate the double use of a full
reference data set (upper right corner). It allows derivations of vari-
ous sparse data sets for systematic tests of TWD (top of figure), and
it serves as a reference for comparison of the results from TWD,
both in time-domain (center of figure) and in frequency domain
(lower right corner). Note that for simplicity the initial reference
data set is already transformed in the third dimension; in this di-
mension all data points are available (see text). Six-cornered boxes
indicate processing steps and rectangular boxes describe input or
output data.

provides an excellent reproduction of both strong and
weak signals in the reference spectrum (Figure 3B). A
difference spectrum (not shown) would contain only
few features at the level of the two lowest contours in
Figure 3. The sparse experimental input does not intro-
duce any significant artifacts in the resulting spectrum.
Furthermore, processing with TWD does not suffer
from the high dynamic range and the large number of
signals found in NOESY-type spectra. Peaks at ωN =
117.4 ppm result from folding and are thus negative;
this has no consequence on their correct reproduction
in Figure 3A. Figure 3C shows another spectrum pro-
cessed with TWD, but this time only 18.75% of the
data from the reference spectrum were selected by ex-
ponentially biased random sampling. Although some

Figure 2. Illustration of a sparse data set for input to TWD (see
Figure 1, upper left corner). Shown is the distribution of (t1,t2)
combinations used in the TWD application yielding the result of
Figure 3A. The dots indicate the 25% of data chosen as input for
this decomposition using an exponentially biased random sampling
with a preference for short t1- and t2-values. Whenever a (t1,t2)
combination is selected for measurement, a complete FID along t3
is recorded, allowing immediate Fourier transform in this direction.

differences to the reference spectrum start to show up,
most features of the latter spectrum are faithfully re-
produced. For comparison, another subset with 25% of
the FIDs from the reference spectrum was chosen, us-
ing this time uniformly sampled data. The acquisition
time in the nitrogen dimension had to be reduced four
times, and the signal size had to be extended six times
in this dimension by linear prediction to achieve the
same final data size prior to DFT (see Methods). The
resulting spectrum, shown in Fig. 3D, clearly contrasts
in quality when compared to the other spectra of this
figure.

Expanding on the description of the effect of dif-
ferent degrees of sparse data sets in Figures 3A–C,
a systematic variation of various parameters was per-
formed. The parameters investigated for their influ-
ence on the result include the ratio R between experi-
mentally observed and full data (as in Figures 3A and
3C) and the number of components M. Two meas-
ures were used to determine the success of each run:
the residual of the decomposition, i.e. the root mean
square difference between the reconstructed and the
references data sets, and the corresponding kurtosis
(Press et al., 1992). For these statistical analyses all
data points, i.e., the full reference data set, were used;
thus all values for residual and kurtosis are based on
the same number of points. The residual should be
minimal, but mainly due to spectral noise it will not
reach zero. A small kurtosis indicates that the dif-
ferences between the input and the output to TWD
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Figure 3. Selected region of the 3D 15N-NOESY-HSQC spectrum
recorded for the 14 kD protein azurin. Planes along the frequencies
of HNOE and 15N with ωHN = 8.82 ppm are shown. (A) Result
from a TWD-calculation with R = 0.25, M = 30 and λ = 0.005.
(B) Corresponding region from the full reference spectrum. (C)
Result from a TWD-calculation with R = 0.1875, M = 30 and
λ = 0.005. The reconstructed time-domain data used for (A) and
(C) were transformed in the same manner as the full reference
time-domain data yielding (B). (D) Result from a data set truncated
to 11 complex points in the 15N dimension followed by conven-
tional linear prediction and DFT (see text). The horizontal lines at
ωN = 114.5 ppm in panels A–C indicate the location of the cross
sections shown in Figure 5.

corresponds to Gaussian noise. Figure 4 displays the
residual and kurtosis as a function of the fraction R
of sparse data for different numbers of components
M. The knee of all curves is near R = 0.20. There-
fore, decompositions using 25% of the total data as in
Figure 3A, or also 18.75% as in Figure 3C, come at
little cost in terms of spectral differences compared to
using a full data set. The number of components plays
a minor role as long as it is not chosen too small to
describe the signals present as for M ≤ 20. Another
parameter whose influence on the outcome of a TWD
application was checked is Tikhonov’s regularization
factor λ. On all previously discussed runs it was set to
0.005. When varying it from 0.0005 to 0.05 for the
decompositions with R = 0.25 and M = 30, the
maximally observed increase of the residual and the
kurtosis was 0.03 and 0.23, respectively. These two
values are smaller than the corresponding variations
when changing the number of components M in the
range 25–50 (see Figure 4). Therefore, the regulariz-
ation factor λ does not represent a critical parameter.
Also, several decompositions were performed with the
same parameters as for the result of Figure 3A, but
choosing different seeds for the random selection of
(t1,t2) combinations; no significant variations of the
results were observed.

A more comprehensive view of the influence of
parameters is afforded by Figure 5, where cross-
sections through the planes shown in Figure 3 are
assembled (see thin lines in Figure 3). Starting again
from the parameter choice of the run of Figure 3A,
i.e., R = 0.25, M = 30 and λ = 0.005, two sets of
runs are compared to the full reference spectrum. In
Figure 5A, the ratio R is varied from 0.0625 to 0.75; in
Figure 5B, the number of components M adopts val-
ues between 15 and 50. Lowering the percentage R of
FIDs used yields an increase in noise, which starts to
hide relevant peaks with R < 18% (Figure 5A). This
gradual growing of noise without the arising of size-
able signal artifacts demonstrates the robustness of the
approach: even at a fraction of 12.5% the peaks that
are still detectable will not be confused with artifacts.
A reduction in experimental data may be considered
as an increase of the noise level. Figure 5A indicates
that the algorithm responds in a very stable way to
added noise. The influence of the choice of the num-
ber of components M is hardly visible in Figure 5B.
However, too small values of this parameter may yield
localized distortions when different components are
forced to merge (Gutmanas et al., 2002).
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Figure 4. Plots of (A) residual and (B) kurtosis for different frac-
tions of sparse data R. Seven curves are shown for different number
of components M = 15, 20, 25, 30, 35, 40 and 50 (line types and
symbols for the different choices of M are indicated in panel A). In
all runs λ was set to 0.005. For residual and kurtosis values, natural
logarithms were calculated and indicated on the vertical axes as ln(r)
and ln(k), respectively.

Discussion

TWD has been shown earlier to present a very general
tool for the processing of multidimensional NMR data
(Orekhov et al., 2001). One may also add that an inher-
ent suitability of TWD for processing of multidimen-
sional NMR data is indicated by the fact that the TWD
model of expression 1 can be directly derived from a
general formulation of NMR pulse sequences. Besides
the demonstration of its applicability to sparse, non-
uniformly sampled data sets, the main conclusions of
the present study regards the robustness and reliability
of TWD. A first issue to mention is the small number
of parameters that are required. The only sensitive and
application dependent parameters are the percentage
R of recorded data and the number of components M.
Reducing the amount of sampled data obviously leads
at some point to failure of a proper reconstruction.

Figure 5. Cross sections for various decompositions through cor-
responding planes of the 15N-HSQC-NOESY (see horizontal lines
at ωN = 114.5 ppm in Figure 3). The thick lines are cross sections
from the application of Figure 3A and from the reference spectrum
of Figure 3B. The thin lines stem from TWD calculations with
systematic parameter variation. For visibility, lines from different
parameter choices are shown with a constant offset. In (A), R is
varied from 0.0625 to 0.75; in (B), M is varied from 15 to 50. For
all runs λ was set to 0.005, and 3000 iterations were performed. The
vertical direction provides intensities; however, due to the offsets
used, the labeling along this axis indicates the value of the parameter
that is varied, i.e. of R in panel A and of M in panel B.
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Figure 5 shows, however, that this failure occurs by
a gradual increase of the noise rather than by a sud-
den appearance of artifacts, making TWD a reliable
method. With respect to the choice of number of com-
ponents M, the similarity of the curves in Figure 4
indicates only marginal sensitivity, once M is suffi-
ciently large. The number of necessary components
M can usually be well estimated; in the application
presented here a simple counting of peaks in a corres-
ponding 15N-HSQC is sufficient. The consequences
when choosing values that are clearly too small such
as M = 15 or 20 remain localized. It was shown
earlier that in this case components with high overlap
may be merged into a single component (Gutmanas
et al., 2002). The somewhat different behavior for
M = 50 (Figure 4B) seems to be caused by over-
parameterization of the model of expression 2. The
choice of the regularization factor λ is not critical,
but some regularization is advisable to avoid pairs of
large components that nearly cancel each other (Dam-
berg et al., 2002; Ibraghimov, 2002). This parameter
appears largely independent of the type of applica-
tion as its use in another context showed (Damberg
et al., 2002); thus our present choice of λ = 0.005
can be suggested quite generally for most applications.
The choices of more ‘technical’ parameters, namely
the seed for the sampling of FIDs used and the num-
ber of iterations in the optimization, resulted in no
unexpected behavior.

The penalty function of expression 2 is, similar
to the previously used expression 1, non-convex, and
thus convergence can formally not be guaranteed. Our
experience, which is based on probably over a thou-
sand runs of MUNIN, indicates reliable convergence
of the optimization procedure chosen, even when ap-
plying it to very different types of data sets (this study,
Gutmanas et al., 2002; Damberg et al., 2002). From
the hundreds of runs on sparse data sets performed
in this study, only one showed a somewhat outstand-
ing behavior. With a seed different than the one used
for Figure 4, the decomposition for the parameter set
R = 0.625 and M = 25 exhibited a kurtosis of similar
size as when using R = 0.25 and M = 30, i.e. the
parameter choice of Figure 3A. Speed of convergence
represents a separate issue. It is known that the type
of optimization used (see appendix of Orekhov et al.,
2001) is intrinsically slow. Other, faster procedures
may, however, cost a price in terms of the quality
of convergence. While we always used 3000 itera-
tions, the second half of the run was mainly used to
make sure that no sudden drop of the penalty function

occurred after it had leveled of. In fact, we did not ob-
serve any significant difference for corresponding runs
stopped after 1000 iterations. The procedure lends
itself very well to parallelization, where little over-
head is observed for runs using ten CPUs (unpublished
data).

As in any other least square fit, the number of
model parameters must be smaller than the number
of experimental measurements. This imposes a nat-
ural lower limit to the amount of data points in a
sparse spectrum. TWD is a true three-dimensional
analysis, and therefore the number of experimental
measurements coincides with the spectral size; for
the region of the reference spectrum used here (Fig-
ure 3B), this is 12 × 88 × 320 = 337920. The number
of model parameters in expression (2) corresponds to
the number of elements in all shapes of all compon-
ents: 30 × (12 + 88 + 320 − 2) = 12540. The ratio
between the two numbers yields about a 27-fold re-
dundancy of the data. Thus, one must have at least
3.7% of the data points to reconstruct the complete
spectrum. In our calculations we found that the recon-
structed spectrum still looks reasonable when using
about 18% of the full data set. Such a sparse data set
theoretically still provides a fivefold redundancy. The
region presented here is one of the most crowded in the
spectrum of azurin. It contains 25 HN-N groups and
thus the choice of M = 30 components is appropriate
(Gutmanas et al., 2002). Redundancy of the data and,
consequently, the quality of the reconstruction would
increase for less crowded regions, where a smaller
number of components is needed, and vice versa.

Comparison with other methods is restricted here
to tools with a demonstrated capability to process
sparse, non-uniformly sampled spectral data from
multidimensional NMR applied to proteins. The most
prominent and best-documented method in this con-
text is maximum entropy (ME) reconstruction. Similar
to TWD, it is proposed as a way to improve on resol-
ution and sensitivity by using non-uniformly sampled
data (Stern et al., 2002). ME reconstruction maximizes
an entropy measure defined in frequency space; this
aspect is sometimes described as choosing a spectrum
with least information (Sibisi, 1983). In practical ap-
plications, noise levels need to be estimated a priori in
order to define run-time parameters (Hoch and Stern,
2001). Noise below the chosen level is then efficiently
suppressed, but the choice has direct implications on
the final sensitivity achieved. In TWD, the only real
parameter for processing of a given sparse data set
is the number of components M. Once this parameter
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is chosen large enough it has hardly any effect (Fig-
ures 4 and 5); the additional components will either
describe signal irregularities or strong noise features.
Sensitivity is thus little affected by any a priori defined
run-time parameter. Ideally, all noise will end up in
the residual, because the minimization of expression
1 or 2 will add as much intensity as possible to the
limited number of components. These will include
preferentially intensity from signals, since they are
often stronger, and several can be collected into one
component. It has indeed been demonstrated that the
noise in the resulting shapes from TWD processing is
smaller than the noise in a conventionally processed
reference spectrum (Gutmanas et al., 2002).

When comparing the suitability of TWD and ME
reconstruction for multidimensional NMR spectra,
complementing preferences regarding the input are re-
vealed. ME reconstruction is most reliable when the
spectra contain a relatively small number of peaks, and
when signal quantification is not very critical (Hoch
and Stern, 2001). On the other hand, TWD in the
current implementation is little affected by a high dy-
namic range, and component definition becomes more
reliably with increasing number of peaks included in
them. Therefore, NOESY-type spectra are very well
suited for TWD, whereas ME reconstruction aims
rather at triple-resonance spectra. While an extensive
literature describes the power of ME reconstruction
over conventional methods for 1D and 2D NMR data,
only a few applications to 3D spectra are published
(Schmieder et al., 1993; Hodgkinson et al., 1993),
none of which includes a NOESY-type spectrum. A
direct comparison between the two methods can there-
fore not be accomplished at this time. With the new
formulation of the TWD model in expression 2, and
with the corresponding new implementation, recon-
struction of full time-domain data from a sparse input
data set becomes possible. This novel feature provides
new opportunities for unstable or low-concentration
samples through sampling schemes optimized for res-
olution, sensitivity and/or experiment time. In ad-
dition, savings of 75% or more of instrument time
open new avenues to high-throughput NMR studies in
structural genomics.
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